
Zephyr: Database Live Migration in Shared Nothing

Databases for Elastic Cloud Platform:

Tawatchai Siripanya

Seminar on Data Management:

No-/ New-SQL techniques and systems

S 19562

Instructor: Prof.Dr.-Ing. Heinz F. Schweppe

July 31, 2012

Computer Science Division

Free University of Berlin, Berlin

tsiripanya@googlemail.com

Abstract. Elastic load balancing is believed to be the key idea of controlling re-

sources and costs in elastic could platforms [1]. The database system can be

scaled up when the load is high, and be scaled down during low load to save

costs. The paper presents Zephyr, the technique that can minimize service inter-

ruption and with no downtime during the database migration.

1 Introduction

When we think about using online application such as in Facebook.com, we can

see that there are many applications we can use with Facebook. We can feel that the

numbers of online application are growing. When there are new interesting applica-

tions coming, we want to use and try it. After that, if there are not interesting anymore

or the trail period has expired and we do not want to pay for it, we just unsubscribe

and do not use it. On the other hand, when we were the online application providers,

we must be able to control the resources essential for the online applications such as

databases because most applications today, the database is mandatory. Also, the data-

base is not for free, and of course there are many open source databases available, but

still we have to pay for it such as the operational costs. Therefore, as providers on one

side, we must be able to make the databases or services available for all users (or

tenants) when the numbers of users increase. On the other side, when the numbers of

users decrease, we must decrease the number of resources such as database nodes to

reduce the costs. We called this as elasticity; the application can scale up for high

load, and scale down for low load. Now, when talking about scaling up and scaling

down in the databases system for the elastic could platform or the cloud environ-

ments, where providers pay for the infrastructure per usages or pay per use. The pro-

viders can expand the infrastructure and migrate databases to the new infrastructures

mailto:tsiripanya@googlemail.com

2

(nodes) when high load to accomplish the service level agreements (SLA). They can

also shrink the number of nodes to save the costs.

The paper aims to introduce Zephyr [1], a technique for database live migration

with no downtime independent on the database size.

The remainder of the paper is structured as follows. Section 2 provides background

information. It describes the basic terminology for database migration such as why we

have to migrate databases. Section 3 presents the Zephyr technique and describes the

limitations of Zephyr. Section 4 evaluates the Zephyr by comparing it to the stop and

copy technique and gives the results of the experiment from [1]. Finally, Section 5

concludes the paper.

2 Database Live Migration

In this section we will give a short description about database live migration in-

clude telling what database live migration is, explaining why we have to do database

live migration, giving information what to keep in mind while doing live migration,

and giving techniques of database live migration.

2.1 What is database live migration?

When talking about data migration, we can think of copying data e.g. from our per-

sonal computer (PC) at home to our notebook. Also, talking about database migration,

we can think of copying databases from a database server to a new database server.

We called database live migration, when during the migration the source database

server and the destination database server can service transactions.

2.2 Why do we need database live migration?

In daily business world, we can assume that our database system can be executed

24 hours per day without downtime. When, business transactions have been interrupt-

ed, the business might get lesser benefits or damage the business reputation. So, busi-

ness transactions shall not interrupted, therefore the migration of databases shall not

have downtime and without interruptions. At the provider’s point of view, we have to

accomplish the SLA while occurrences of high workload and the tenant should not be

noticed, for this reason; we have to migrate data from the node with high workload to

a new node.

2.3 What to keep in mind when doing database live migration?

As mentioned earlier, there is no perfect database system in the real world. The

things we have to keep in mind, when we dealing with database live migration can be

described in the following: firstly, the costs of migrant that might associate with the

SLA. These costs can be for instance; service interruption, migration overhead, and

3

additional data transferred. Due to the page limitation, the paper will not further de-

scribe details of the mentioned costs, also the correctness and fault tolerance of Zeph-

yr have to be skipped, for further reading can be found in [1], and [3].

2.4 What are techniques for database live migration?

There are many techniques available for database migration such as stop and copy;

this technique, the source stops services of updates, checkpoints the states, then, the

destination loads the checkpoints. And, finally, the services are started at the destina-

tion. This technique is however expensive because of the long period of services in-

terruption or downtime during migration. This paper will introduce the other tech-

nique which is called “ZEPHYR”. This technique allows both source and destination

database server service transaction concurrently. This technique is explained in the

next sections.

Now, before we describe more details about live migration in cloud computing en-

vironment, we have to understand the fundamental terms that will be used throughout

this paper.

2.5 Multitenancy Models

In general, there are three multitennacy models include shared table, shared pro-

cess, and shared machine [1]. We can describe the three models in the following:

Shared table model

The example for the share table model can be such as; the applications provided by

Saleforce.com. These applications are typically called Software as a Service or in

short SaaS. The data of tenants are stored in a big table. Each tenant is isolated from

each other using row isolation level. This technique maximizes resource sharing,

however the schema of each tenant has to be identical [1].

Shared process model

This model allows tenants to have different schema. Also, it supplies better isola-

tion than the shared table model in the same database process [1]. But, it cannot sup-

plement virtual machines (VM) migration to move individual tenants from a shared

database process [1].

Shared Machine

This model uses VM to isolate tenants from each other. That is, each tenant is in-

stalled in different VM. Using this technique can leverage VM migration techniques

for elastic load balancing [1]. But, by doing so, it is inefficient for resource sharing

between tenants [2].

4

3 ZEPHYR Technique

3.1 What is ZEPHYR

ZEPHYR is a framework developed by the University of California, Santa Barba-

ra, USA in 2011. It aims to avoid the downtime during the database migration that

allows both source database and the destination database nodes execute transactions

concurrently. It uses page ownership principle, index wireframe, and based on the

share process model [1].

3.2 How does ZEPHYR work?

ZEPHYR aims to avoid service interruptions by increasing service availability al-

lowing both the source and the destination concurrently serves services. Unlike stop

and copy technique which migrates data one time as a whole, ZEPHYR breaks down

the migration into collection of phases. It starts to transfer minimal information from

the source to the destination called “wireframe“ consists of database schema, metada-

ta, user authentication, and index wireframe. This information allows the destination

to serve services or to execute transactions. We called this period or phase “Init

Mode”. During migration the index structures are made immutable; index structures

are not allowed to be changed at both source and destination; that means any update

that will change the index structures will be aborted. Then, the source will tell the

router to direct any new transactions to arrive at the destination. In other word, the

source will serve only the existing transactions, and the destination will serve the new

coming transactions. By doing so, the source and the destination are allowed to exe-

cute transactions concurrently. ZEPHYR introduces the concept of page owner ship

that is; at first the source owns all the pages, the destination will pull the data from the

page that it not owned from the source for the new transactions on demand. Then, the

source will transfer the page ownership to the destination. Once the data has been

pulled by the destination, it is not allowed to pull back. There is no synchronization

between the source and the destination at this point; this allows minimizing the over-

head during this period. The system controller is used to determine the destination for

migration. We called the period where the source and the destination are sharing the

ownership of database being migrated “ Dual Mode”. When there are no more trans-

actions in the source, the source will initiate transfer of the exclusive ownership to the

destination using a handshake [1] between both two nodes, and then both nodes (the

source and the destination) enter the “Finish Mode”. In the finish mode, only the des-

tination serves transactions and it does not yet has the ownership of all the database

pages, therefore the source has to push the remaining database pages to the destina-

tion so that the destination is the sole owner of the database pages. The source initi-

ates the termination of migration, when all database pages have been moved to the

destination and the operation can be switched back to the normal operation mode. At

this period, the handshake between the source and the destination is invoked again.

Also, the source will notify the system controller of the termination. The figure 1

5

illustrates the timeline of different phases during migration and the figure 2 shows the

ownership transfer of database pages during the migration.

Fig. 1. Timeline during the migration [1]

Fig. 2. The ownership transfer of the database pages [1]

3.3 What are limitations of ZEPHYR

Zephyr is not designed to support large tenants as described in [1]. Also, it relies

heavily on the index structures that must be made immutable during migration. Fur-

thermore, Zephyr is not off-the-shelf software that can be used right away, that means

extra implementations and modifications are required. Further information about the

implementation of Zephyr as described in [1] can be found only a short detail.

6

4 ZEPHYR Evaluation

We can describe the experimental evaluation of Zephyr in the following [1]: Zeph-

yr has been compared with the off-the-shelf stop and copy technique described in the

earlier section. There was two database nodes with 2.40GHz Intel Core 2 Quad pro-

cessor, the main memory 8 GB, Hard disk drive 7200 RPM SATA with 32MB Cache,

the operating system 64-bit Ubuntu Server Edition with Java 1.6, the network connec-

tion: via a gigabit switch, the workload was using load Generator & transactions from

Yahoo! cloud serving benchmark (YCSB), the database size of (page size 16KB and

cache size: 32MB) with 100,000 rows. And, the total size of the database was about

250MB.The significant founds are in the following: (1) Using Zephyr technique re-

quires 10 to 18 seconds to finish the migration, also both the source and destination

nodes have no downtime compare to stop and copy technique which requires shorter

migration time but with the 3-8 seconds downtime [1]. (2) The stop and copy tech-

nique required longer time of unavailability as the size of the increases, on the other

hand, for Zephyr required longer time to switch to the finish mode, but it does not

result unavailability, also the size of the database has no effect to the number of failed

operations [1]. Generally speaking, Zephyr requires longer migration, but it has no

downtime. Furthermore, with Zephyr, the size of the database has no impact to the

number of failed operations.

5 Conclusion and Perspectives

In this paper, we have described the database live migration, the reason why the

database has to be migrated to a new node; one reason is to accomplish SLA, to make

all tenants happy. Further, we have to consider migration costs include service inter-

ruption, migration overhead, and additional data transferred. There are two techniques

have been introduced; the stop and copy and Zephyr techniques. The first technique,

all update operations have to be aborted during migration which causes long service

interruption, whereas Zephyr does not cause service interruptions during migration.

We have found some limitations of Zephyr and have given them in short details. The

experiment has shown Zephyr requires longer migration than the stop and copy tech-

nique, but it has no downtime. Furthermore, with Zephyr, the size of the database has

no impact to the number of failed operations.

We believe that the limitations shall be improved, and more features shall be added

in the future. Finally, we hope for more research in this area.

7

6 References

1. Ellmore, A. et al.: Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud

Platforms, ACM SIGMOD '11, 2011.

2. C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden,H. Balakrishnan, and N.

Zeldovich. Relational Cloud: A Database Service for the Cloud. In CIDR, pages 235–240,

2011.

3. Barker, S. et al.: “Cut Me Some Slack”: Latency-Aware Live Migration for Databases,

EDBT 2012.

